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Abstract

We present a game of interacting agents which mimics the complex dynamics

found in many natural and social systems. These agents modify their strategies

periodically, depending on their performances using genetic crossover

mechanisms, inspired by biology. We study the performances of the agents

under different conditions, and how they adapt themselves. In addition the

dynamics of the game is investigated.

1. Introduction

Is the ‘‘survival of the fittest’’ principle limited to biology
only? Perhaps not and there could be other spheres of life
in which this principle is applicable. Competition plays a
key role and in order to compete and thus survive in any
environment or situation, one primarily needs to adapt in
order to succeed. Then what is adaptation and evolution?
Adaptation is an alteration or adjustment in structure or
habits, often hereditary, by which a species or individual
improves its condition in relationship to its environment.
Evolution is the change in the genetic composition of a
population during successive generations, as a result of
natural selection acting on the genetic variation among
individuals, and resulting in the development of a new
species. Here, we show that in the behaviour of various
complex systems found in natural and social environments
[1–5], that can be characterized by the competition among
interacting agents for scarce resources, adaptation to the
environment plays a very important role.
These agents could be diverse in form and in capability,

ranging for example from carcinogenic cells in the human
body to multinational firms in the global financial market.
In these dynamically evolving complex systems the nature
of agents and their behaviour differ a lot but they have a
common underlying mechanism. In order to have a deeper
understanding of the interactions of the large number of
agents, one should first consider the individual capabilities
of the agents. Its behaviour may be thought of as a
collection of simple rules governing ‘‘responses’’ to
numerous ‘‘stimuli’’. The rules of action serve as the
agents’ strategies, and the behaviour of an agent is the rules
acting sequentially. Therefore, in order to model any
complex dynamically adaptive system, a major concern is
the selection and representation of the stimuli and
responses, since the behaviour and strategies of the
component agents are determined thereby. Then the
agent needs to adapt to different situations, where the
experience of an agent guides it to change its structure so
that as time passes, the agent learns to make better use of

the environment for its own benefit. However, the time-
scales over which the agents adapt vary from one
individual to another and also from one system to another.

In complex adaptive systems, many interesting temporal
patterns are produced, since a major part of the environ-
ment of a particular agent includes other adaptive agents
and a considerable amount of agent’s effort goes in
adaptation and reaction to the other agents. Thus the
situation is considerably different and more complicated
than in game theory [6] and conventional theories in
economics, where the study is of patterns in behavioural
equilibrium that induce no further interaction.

Another topic of recent interest has been coevolutionary
search algorithms to evaluate evolving solutions which use
high quality strategies, and their applications to spatially
embedded systems [7]. In such embedded systems, the
individuals are distributed on a regular grid and amongst
the locally neighbouring individuals, ‘‘evolutionary’’ pro-
cesses such as selection, crossover, etc. take place. Optimal
strategies can be found in many cases for such systems.

In this paper, we study a simple game based on the basic
minority game [8–12], where the agents adapt themselves
by modifying their strategies from time to time, depending
on their current performances, using genetic crossover
mechanisms [13–16]. The game can be a very simple
representation of a complex adaptive system and we
demonstrate that ‘‘optimal’’ strategies can be found at
times by the players to become ‘‘winners’’. We make a
comparative study of their performances with the various
mechanisms and in a ‘‘test’’ situation.

2. Model

In this section we give a brief description of the model. The
basic minority game consists of an odd number N of agents
who can perform at a given time t; any of the two possible
actions denoted here by 0 or 1. The minority game was
based on the El Farol bar problem, created by Brian
Arthur, in which a population of agents have to decide
whether to go to the bar every Thursday night, and so there
were two possible actions ‘‘to attend’’ denoted by 1 and
‘‘not to attend’’ denoted by 0, depending on whether the
bar was too crowded or not [5]. An agent wins the game if
it is one of the members of the minority group. All the
agents are assumed to have access to finite amount of
‘‘global’’ information: a common bit-string ‘‘memory’’ of
the M most recent outcomes. With this there are 2M

possible ‘‘history’’ bit-strings. Now, a ‘‘strategy’’ consists
of two possible responses, which in the binary sense are an
action 0 or action 1 to each possible history bit-strings.� e-mail: anirban@lce.hut.fi; URL: http://www.lce.hut.fi/�anirban
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Thus, there are 22
M

possible strategies constituting the
whole ‘‘strategy space’’.
Each time the game has been played, time t is

incremented by unity and one ‘‘virtual’’ point is assigned
to the strategies that predicted the correct outcome and the
best strategy is the one which has the highest virtual point
score. The performance of a player is measured by the
number of times the player wins, and the strategy, which
the player uses to win, gets a ‘‘real’’ point. The number of
agents who have chosen a particular action, say 1 which
represents ‘‘to attend’’, is denoted by A1 tð Þ (also referred as
‘‘attendance’’) and it varies with time. We have plotted the
attendance and performance for the basic minority game in
Fig. 1.
Now we define the total utility of the system as the

number of persons in the minority group at a given time t:
For convenience, we mathematically define a scaled utility
(total utility/maximum utility) as

U ¼ 1� � xt � xMð Þð Þxt þ � xt � xMð Þ N� xtð Þ½ �=xM; ð1Þ

where xM ¼ N� 1ð Þ=2; xt is either equal to A1 tð Þ or A0 tð Þ;
and � xð Þ is the Heaviside step function:

� xð Þ ¼
0 when x � 0,

1 when x > 0.

�

The players examine their performances after every time
interval !: If a player finds that he is among the fraction n
(where 0 < n < 1) who are the worst performing players, he
adapts himself and modifies his strategies. The mechanism
by which the player creates new strategies is genetic
crossover, whereby he selects the two ‘‘parents’’ from his
pool of k strategies and creates two new ‘‘children’’ [15,16],
as described in Fig. 2.
If the parents are chosen randomly from the pool of

strategies then the mechanism represents a ‘‘one-point
genetic crossover’’ and if the parents are the best strategies
then the mechanism represents a ‘‘hybridized genetic
crossover’’. The children may replace parents or two
worst strategies and accordingly four different interesting
cases arise: (a) one-point genetic crossover with parents

‘‘killed’’, i.e., parents are replaced by the children, (b) one-
point genetic crossover with parents ‘‘saved’’, i.e., the two
worst strategies are replaced by the children but the parents
are retained, (c) hybridized genetic crossover with parents
‘‘killed’’ and (d) hybridized genetic crossover with parents
‘‘saved’’.

It should be noted that the mechanism of evolution of
strategies is considerably different from earlier attempts
[8,17,18]. This is because in this mechanism the strategies
are changed by the agents themselves and even though the
strategy space evolves continuously, its size and dimen-
sionality remain the same.

The Hamming distance dH between two bit-strings is
defined as the ratio of the number of uncommon bits to the
total length of the bit strings. It is a measure of the
correlation between two strategies:

dH ¼

0 correlated

0:5 uncorrelated

1 anti-correlated

8>><
>>:

which can be plotted as the game evolves.

3. Results

In order to determine which mechanism is the most
efficient, we have made a comparative study of the four
cases, mentioned earlier. We plot the attendance as a
function of time for the different mechanisms in Fig. 3.

In Fig. 4 we show the total utility of the system in each of
the cases (a)–(d), where we have plotted results of the
average over 100 runs and each point in the utility curve
represents a time average taken over a bin of length 50
time-steps. The simulation time is doubled from those in
Fig. 3, in order to expose the asymptotic behaviour better.
On the basis of Figs. 3 and 4, we find that case (d) is the
most efficient.

In Fig. 5 (a) one can see the evolution of the average
Hamming distance of all the strategies of a player in a
game, where the player adapts using one-point genetic
crossover and the two worst strategies are replaced by the
children and the parents are also saved. It should be noted
that the Hamming distance can change only when the

Fig. 1. Plots of (a) attendance and (b) performance of the players for the

basic minority game with N ¼ 801;M ¼ 6; k ¼ 10 and T ¼ 5000:

Fig. 2. Schematic diagram to illustrate the mechanism of one-point

genetic crossover for producing new strategies. The strategies si and sj are

the parents. We choose the breaking point randomly and through this one-

point genetic crossover, the children sk and sl are produced.
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worst strategies are replaced by the children and the
parents are saved, where the bits in a strategy pool can
change over time. Otherwise the bits in the pool of
strategies remain the same. We observe that the curves
tend to move downwards from around 0.5 towards zero,
which means that as the time evolves, the correlation
amongst the strategies increases and the strategies in the
pool of a particular agent converges towards one strategy.
The nature of the curves depend a lot on the parameters of
the game. In Fig. 5(b) one can see the evolution of the
average Hamming distance of all the strategies of a player
in the game, where the player adapts using hybridized
genetic crossover and the two worst strategies are replaced
by the children and the parents are also saved. Here too,
the strategies in the pool of a particular agent converge
towards one strategy, and at a faster rate than with the
previous mechanism. We observe that increasing memory
M does not change the convergence rate dramatically, but
as we increase the number of strategies in the pools, the
convergence slows down.
In order to investigate what happens in the level of an

individual agent, we created a competitive surrounding—
‘‘test’’ situation where after T ¼ 3120 time-steps, six
players begin to adapt and modify their strategies such
that three are using hybridized genetic crossover mechan-
ism and the other three one point genetic crossover, where
children replace the parents. The rest of the players play the
basic minority game. In this case it turns out that in the end
the best players are those who use the hybridized
mechanism, second best are those using the one-point
mechanism, and the worst players are those who do not
adapt at all (see Fig. 6). In addition it turns out that the
competition amongst the players who adapt using the
hybridized genetic crossover mechanism is severe.

4. Conclusion

We can summarize our findings by stating that adaptation
improves not only the individual player’s performance but
also improves the total utility of the system. The best

Fig. 3. Plots of the attendances by choosing parents randomly (a) and (b),

and using the best parents in a player’s pool (c) and (d). In (a) and (c)

parents are replaced by children and in (b) and (d) children replace the two

worst strategies. Simulations have been done with N ¼ 801, M ¼ 6,

k ¼ 16; ! ¼ 40; n ¼ 0:4 and T ¼ 10000:

Fig. 4. Plots of the scaled utilities of the four different mechanisms (a)–(d)

in comparison with that of the basic minority game (BMG). Each curve

represents an ensemble average over 100 runs and each point in a curve is

a time average over a bin of length 50 time-steps. In the inset, the quantity

(1�U) is plotted against scaled time in a double logarithmic scale.

Simulations are done with N ¼ 801;M ¼ 6; k ¼ 16; ! ¼ 40; n ¼ 0:4 and

T ¼ 20000:

Fig. 5. Plot of the average Hamming distance of all the strategies in a pool

of a player with time, where the player adapts using (a) one-point genetic

crossover and (b) hybridized genetic crossover, and in both cases the two

worst strategies are replaced by the children and the parents are also

saved. Each curve is an ensemble average over 20 runs.
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results are found for the players who adapt and modify
their strategies using the hybridized genetic crossover
mechanism and the children replace the two worst
strategies and the parents are saved. The mechanism of
adaptation is very simple and can be used to model
different complex adaptive systems. It can also be
potentially developed to include other features like muta-
tion. We can thus say that in a way, ‘‘biology helps you to
win a game’’.
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Fig. 6. Plot of the performance of the players where after T ¼ 3120 time-

steps, six players begin to adapt and modify their strategies: three using

hybridized genetic crossover mechanism (HG) and the other three using

one point genetic crossover (OPG), where children replace the parents.

Other players play the basic minority game (BMG) all the time and do not

adapt. The simulations are done with N ¼ 801;M ¼ 8; k ¼ 16; n ¼ 0:3;

! ¼ 80; and T ¼ 10000:
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